Design, Synthesis, and <i>In</i>-<i>Vitro</i> Biological Evaluation of PARP-1 Inhibitors Based on a 4-(Benzylideneamino)-N-(Quinolin-8-yl)Benzamide Scaffold

نویسندگان

چکیده

Novel poly(ADP-ribose)polymerase (PARP)-1 inhibitors containing, the 4-(benzylideneamino)-N-(quinolin-8-yl)benzamide moiety, were designed and synthesized. The docking study revealed that compounds possess significant to moderate interaction with targeted enzyme PARP1. Among them compound 3d (−52.04 K/cal) 3e (−50.234 showed similar Glidescore compared Olaprib (−57.76 K/cal). Some of synthesized displayed good PARP-1 inhibitory activity, among them, most potent one. Enzyme assay indicated 3d, 3e, 3i 3o exhibited an activity against olaparib. All screened for their in vitro anticancer MCF-7 MDA-MB-232 cell lines. (60.63 μg/mL 56.38 μg/mL) (3 68.03 54.42 ones. In addition, ADMET prediction results these might be less toxic display more interesting pharmacokinetic properties.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design, Synthesis, and Biological Evaluation of Novel PARP-1 Inhibitors Based on a 1H-Thieno[3,4-d] Imidazole-4-Carboxamide Scaffold.

A series of poly(ADP-ribose)polymerase (PARP)-1 inhibitors containing a novel scaffold, the 1H-thieno[3,4-d]imidazole-4-carboxamide moiety, was designed and synthesized. These efforts provided some compounds with relatively good PARP-1 inhibitory activity, and among them, 16l was the most potent one. Cellular evaluations indicated that the anti-proliferative activities of 16g, 16i, 16j and 16l ...

متن کامل

Design, Synthesis and Biological Evaluation of 4-Benzamidobenzoic Acid Hydrazide Derivatives as Novel Soluble Epoxide Hydrolase Inhibitors

Inhibitors of soluble epoxide hydrolase (sEH) represent one of the novel pharmaceutical approaches for treating hypertension, vascular inflammation, pain and other cardiovascular related diseases. Most of the potent sEH inhibitors reported in literature often suffer from poor solubility and bioavailability. Toward improving pharmacokinetic profile beside favorable potency, two series of 4-benza...

متن کامل

Design, Synthesis and Biological Evaluation of 4-Benzamidobenzoic Acid Hydrazide Derivatives as Novel Soluble Epoxide Hydrolase Inhibitors

Inhibitors of soluble epoxide hydrolase (sEH) represent one of the novel pharmaceutical approaches for treating hypertension, vascular inflammation, pain and other cardiovascular related diseases. Most of the potent sEH inhibitors reported in literature often suffer from poor solubility and bioavailability. Toward improving pharmacokinetic profile beside favorable potency, two series of 4-benza...

متن کامل

Design, Synthesis and Biological Evaluation of Novel Peptide-Like Analogues as Selective COX-2 Inhibitors

A new series of peptide-like derivatives containing different aromatic amino acids andpossessing pharmacophores of COX-2 inhibitors as SO2Me or N3 attached to the para positionof an end phenyl ring was synthesized for evaluation as selective cyclooxygenase-2 (COX-2)inhibitors. The synthetic reactions were based on the solid phase peptide synthesis methodusing Wang resin. One of the analogues, i...

متن کامل

Design, Synthesis and Biological Evaluation of new 1,4-Dihydropyridine (DHP) Derivatives as Selective Cyclooxygenase-2 Inhibitors

As a continuous research for discovery of new COX-2 inhibitors, chemical synthesis, in vitro biological activity and molecular docking study of anew group of 1,4-dihydropyridine (DHP) derivatives were presented. Novel synthesized compounds possessing a COX-2 SO2Me pharmacophore at the para position of C-4 phenyl ring, different hydrophobic groups (R1) at C-2 position and alkoxycarbonyl groups (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Polycyclic Aromatic Compounds

سال: 2022

ISSN: ['1563-5333', '1026-7743', '1040-6638']

DOI: https://doi.org/10.1080/10406638.2022.2033802